01背包中背包装满和不装满

2018年03月23日 13点热度 0人点赞 0条评论

背包:
有n 种不同的物品,每个物品有两个属性,
v体积,c价值,现在给一个体积为 m 的背包,问最多可带走多少价值的物品。
      状态转移方程  dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i]]+c[i])
dp[i-1][j]表示不放第i件物品的最大价值,dp
[i-1][j-v[i]]+c[i]表示放第i件物品的最大价值;[i-1][j-v[i]]这个表示将    前i-1件物品放入空间为  j-v[i] 的背包中的最大价值。为啥要j-v[i] ?因为要放第i件物品,所以所剩空间就剩了      j-v[i].  所以[i-1][j-v[i]]+c[i]就表示放第i件物品的最大价值。

第(1)种情况:背包不一定装满。
dp[j]记录的是前i件物品放入空间为j的背包中的最大价值!!!
要在一开始,让dp[1001]中的每个值为 0;

计算顺序是:从右往左,自上而下:因为每个物品只能放一次,前面先放的物品所占空小的会影响占空大的01背包中背包装满和不装满


(2)背包刚好装满    

     计算顺序是:从右往左,自上而下。注意初始值,其中-inf表示负无穷(codeblocks中没有直接表示无穷的符号,inf是自己定义的)

01背包中背包装满和不装满

背包刚好装满需要注意:

要把f[j]  (表示刚好装满的最大价值) 这样初始化!

f[0]=0; f[1~n]=负无穷!

因为这样就能是那些能够恰好装满背包的物品的值为正数!而那些不能恰好装满背包的物品 的值就为负数。

这样就容易区分了。

这样dp(n)(背包最多承重) == inf话,说明装不满,装满的话 如果要求装满最多的价值,直接输出dp【n】

以下是是用一维数组写的

01背包中背包装满和不装满
01背包中背包装满和不装满






以下是二维数组写的。
01背包中背包装满和不装满
01背包中背包装满和不装满


二维数组的方法运行结果是这样的,我特意输出了每个值…… 

 与前面的表格完全一样! 我把负无穷规定为-100,所以结果中的负数就是代表上面表格中的   -inf
01背包中背包装满和不装满
未经允许不得转载!01背包中背包装满和不装满

update

纸上得来终觉浅, 绝知此事须躬行。