GitHub:车道线检测最全资料集锦

2020-09-03 186点热度 2人点赞

前言

这份资料,笔者可以保证是目前网上关于车道线检测最全的资料合集(如果你知道有更棒的,欢迎后台推荐)。

一幅图理解一下车道检测是干嘛的:

据笔者了解,车道线检测解决方案主要分为传统图像处理和深度学习两种。看起来每个领域都可以这么说,但车道线检测与其它研究方向不太一样。因为检测的目标可能是直线也可能是曲线,而且只是"线"而已,目前很多公司还在用传统图像处理方法来解决。
这个开源库主要包括以下内容:

  • 论文(以2017之后为主)
  • 开源代码
  • 博客
  • 数据集

论文

如图所示,尽可能涵盖了两年内车道线检测(lane detection)方向的论文。这里点名推荐一篇IEEE IV 2018的优秀论文《LaneNet: Real-Time Lane Detection Networks for Autonomous Driving》和一篇AAAI 2018《Spatial As Deep: Spatial CNN for Traffic Scene Understanding》

开源代码

网上关于车道线检测的开源代码,最著名的应该是Udacity课程中项目实例:CarND-Advanced-Lane-Lines。

博客和数据集

数据集这一块内容还很少,不过每篇论文中多少会说明在哪些数据集上训练/测试的。后续会继续补充,也欢迎大家push。

侃侃

个人觉得车道线检测其实是个很有意思、具有难度且有需求的研究方向。你既可以了解传统图像处理如何解决这个问题,也可以通过深度学习来解决,可谓一举两得。

国内做自动驾驶方向的公司很多,而且这个方向与公司业务也是强关联的,笔者认为很有助于找工作。

获取更多论文和代码内容请查看全文

隐藏内容需要支付:¥5

未经允许不得转载!GitHub:车道线检测最全资料集锦

本文地址:https://ai.52learn.online/1605

站长邮箱:ai52learn@foxmail.com