一、简介       上采样的技术是图像进行超分辨率的必要步骤,最近看到了CVPR2019有一些关于上采样的文章,所以想着把上采样的方法做一个简单的总结。看了一些文章后,发现上采样大致被总结成了三个类别:1、基于线性插值的上采样2、基于深度学习的上采样(转置卷积)3、Unpooling的方法其实第三种只是做各种简单的补零或者扩充操作,下文将不对其进行涉及。 为了方便大家阅读,做了个小的目录,接下来的文章介绍主要分为以下内容:线性插值1、最近邻算法2、双线性…

2021-01-14 65点热度 1人点赞 阅读全文

前言 最近爬取了武汉地铁线路的信息,通过调用高德地图的api 获得各个站点的进度和纬度信息,使用Dijkstra算法对路径进行规划。 1.数据爬取 首先是需要获得武汉各个地铁的地铁站信息,通过爬虫爬取武汉各个地铁站点的信息,并存储到xlsx文件中 武汉地铁线路图,2021最新武汉地铁线路图,武汉地铁地图-武汉本地宝wh.bendibao.com 方法:requests、BeautifulSoup、pandas import requests from bs4 import BeautifulSoup import …

2020-12-12 121点热度 1人点赞 阅读全文

由来 假设我们有  个值的数据集 ,我们想要求  的值,应该如何计算? 看上去这个问题可能比较奇怪,但是实际上我们在神经网络中经常能碰到这个问题。 在神经网络中,假设我们的最后一层是使用softmax去得到一个概率分布,softmax的形式为:  这里的  是其中的一个值。最终loss函数如果使用cross entropy,那么就涉及到需要对该式求  ,也就是 这里的减号后面的部分,也就是我们上面所要求的 …

2020-09-24 92点热度 2人点赞 阅读全文

为了降低计算量,当前先进的卷积网络通常在3×3卷积之前增加一个1×1卷积,用于通道间的信息流通与降维。然而在ResNeXt、MobileNet等高性能的网络中,1×1卷积却占用了大量的计算资源。 2017年的ShuffleNet v1从优化网络结构的角度出发,利用组卷积与通道混洗(Channel Shuffle)的操作有效降低了1×1逐点卷积的计算量,是一个极为高效的轻量化网络。而2018年的ShuffleNet v2则在ShuffleNet v1版本的基础上实现了更为优越的性能,本节将详细介绍这两个Shuffle…

2020-08-25 157点热度 1人点赞 阅读全文

当物体检测应用到实际工业场景时,模型的参数量是一个十分重要的指标,较小的模型可以高效地进行分布式训练,减小模型更新开销,降低平台体积功耗存储和计算能力的限制,方便在FPGA等边缘平台上部署。 基于以上几点,Han等人提出了轻量化模型SqueezeNet,其性能与AlexNet相近,而模型参数仅有AlexNet的1/50。在本节将首先介绍SqueezeNet的模型结构,然后对该模型进行总结与分析。 SqueezeNet网络结构 随着网络结构的逐渐加深,模型的性能有了大幅度提升,但这也增加了网络参数与前向计算的时间。S…

2020-08-25 92点热度 1人点赞 阅读全文

Python是一门现代、易学、面向对象的编程语言。它拥有强大的內建数据类型以及简单易用的控制语句。由于Python是一门解释型语言,因此只需要查看和描述交互式会话就能进行学习。你应该记得,解释器会显示提示符>>>,然后计算你提供的Python语句。例如,以下代码显示了提示符、print函数、结果,以及下一个提示符。 数据 Python支持面向对象编程范式,这意味着Python认为数据是问题解决过程中的关键点。在Python以及其他所有面向对象编程语言中,类都是对数据的构成(状态)以及数据能做什么(行为)的描述。由于…

2020-07-22 137点热度 3人点赞 阅读全文

理解RPN的预测量与真值分别是什么,也是理解RPN原理的关键。对于物体检测任务来讲,模型需要预测每一个物体的类别及其出现的位置,即类别、中心点坐标x与y、宽w与高h这5个量。由于有了Anchor这个先验框,RPN可以预测Anchor的类别作为预测边框的类别,并且可以预测真实的边框相对于Anchor的偏移量,而不是直接预测边框的中心点坐标x与y、宽高w与h。 举个例子,如图1所示,输入图像中有3个Anchors与两个标签,从位置来看,Anchor A、C分别和标签M、N有一定的重叠,而Anchor B位置更像是背景。…

2020-06-26 106点热度 0人点赞 阅读全文

理解Anchor是理解RPN乃至Faster RCNN的关键。Faster RCNN先提供一些先验的边框,然后再去筛选与修正,这样在Anchor的基础上做物体检测要比从无到有的直接拟合物体的边框容易一些。 Anchor的本质是在原图大小上的一系列的矩形框,但Faster RCNN将这一系列的矩形框和feature map进行了关联。具体做法是,首先对feature map进行3×3的卷积操作,得到的每一个点的维度是512维,这512维的数据对应着原始图片上的很多不同的大小与宽高区域的特征,这些区域的中心点都相同。如…

2020-06-26 108点热度 0人点赞 阅读全文

RPN部分的输入、输出如下: 输入:feature map、物体标签,即训练集中所有物体的类别与边框位置。 输出:Proposal、分类Loss、回归Loss,其中,Proposal作为生成的区域,供后续模块分类与回归。两部分损失用作优化网络。 RPN模块的总体代码逻辑如下,源代码文件见lib/model/faster_rcnn/faster_rcnn.py。 本文中的源代码文件获取方式请参考:http://ai.52learn.online/1042

2020-06-26 80点热度 0人点赞 阅读全文

RCNN全称为Regions with CNN Features,是将深度学习应用到物体检测领域的经典之作,并凭借卷积网络出色的特征提取能力,大幅度提升了物体检测的效果。而随后基于RCNN的Fast RCNN及Faster RCNN将物体检测问题进一步优化,在实现方式、速度、精度上均有了大幅度提升。 物体检测领域出现的新成果很大一部分也是基于RCNN系列的思想,尤其是Faster RCNN,并且在解决小物体、拥挤等较难任务时,RCNN系列仍然具有较强的优势。因此,想要学习物体检测,RCNN系列是第一个需要全面掌握的…

2020-06-26 123点热度 1人点赞 阅读全文
12